THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2055 Tutorial 5 (Oct 19)

Ng Wing Kit

1. Let a be a real number, and let f, g be differentiable on $(a-d, a+d)$ where d is a positive real number.
If $g^{\prime}(x) \neq 0$ and $g(x) \neq 0$ on $(a-d, a+d)$,
$\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\infty$,
show that $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\infty$
2. Show that $\lim _{x \rightarrow-1} \frac{x+5}{2 x+3}=4$
3. show that $\lim _{x \rightarrow 0} \sin \left(1 / x^{2}\right)$ does not exist.
4. Suppose f is a continuous function map $[0,1]$ to $[0,1]$.

Show that there exists $x \in[0,1]$ such that $f(x)=x$.
Is the statement still true if the interval is replaced by $[0,1] \cup[2,3]$?
5 . Let f be continuous on the interval $[0,1]$ to \mathbb{R} and such that $f(0)=f(1)$.
Prove that there exists a point c in $\left[0, \frac{1}{2}\right]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.

