THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2055 Tutorial 5 (Oct 19)

1. Let a be a real number, and let f, g be differentiable on (a - d, a + d) where d is a positive real number.

If $g'(x) \neq 0$ and $g(x) \neq 0$ on (a - d, a + d), $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ and $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \infty$, show that $\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$

- 2. Show that $\lim_{x \to -1} \frac{x+5}{2x+3} = 4$
- 3. show that $\lim_{x\to 0} \sin(1/x^2)$ does not exist.
- 4. Suppose f is a continuous function map [0, 1] to [0, 1]. Show that there exists $x \in [0, 1]$ such that f(x) = x. Is the statement still true if the interval is replaced by $[0, 1] \cup [2, 3]$?
- 5. Let f be continuous on the interval [0, 1] to \mathbb{R} and such that f(0) = f(1). Prove that there exists a point c in $[0, \frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$.